A study was made of the properties of a reacuon-elcctrodiffusion system. A two-component model was developed to describe how interacting charged particles diffuse near the membrane in low-ionic-strength media for which the common assumption of electroneutrality is invalid. Analysis of this model - constructed to take into account the presence a self-consistent field - shows that the latter contributes to the emergence of bistability, localized structures with highly heterogeneous spatial distributions of charges, and spatially and temporally aperiodic modes.
A model is proposed that describes electrodiffusion in the layer adjacent to the cell membrane. The model takes into account chemical reactions at the membrane, Coulomb interactions between particles, their random motion (diffusion), and the effect of an external electric field. Linear analysis of the model shows a possibility of spatiotemporal patterning in the presence of an applied electric field. The dissipative structures formed in the presence and the absence of the electric field differ in a number of characteristics. First, the former structure drifts. Its slow drift proceeds unidirectionally. While it drifts, the number of its structural elements varies. Second, isolated soliton-like structures may emerge in this system. as the dispersion relation contains not only even, but also odd powers of the wavenumber k. In addition to Turing-type diffusion instability, dispersion instability may arise in the presence of an external electric field, also causing spatiotemporal patterning.